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Abstract. The existing AT1 algorithm produces a time scale with a fractional frequency variation smaller 
than that of any clock in the ensemble. We are developing a modification to AT1 that includes the 
additional desirable features : automatic frequency-step detection, the option to run in an optimal post- 
processing mode and to run with minimal supervision in non-technical environments. These properties are 
facilitated by the inclusion of a Kalman-filter estimate of the frequency variance of each clock in the 
scale. Results are reported from both simulated and real clock data to demonstrate automatic frequency- 
stcp detection. 

I .  Introduction 

By sampling an ensemble of clocks, an ideal time 
scale algorithm would generate time and frequency 
with more reliability, stability, and frequency accuracy 
than any one of the individual clocks in the 
ensemble. In this paper we study an approach to 
this ideal. 

A time scale algorithm calculates the time offset 
of each clock from ensemble time at a given 
reference time. Ensemble time - the time of the 
scale - is realized by applying the appropriate offset 
to the time of any one clock. If there is no 
measurement noise, then this value is independent 
of the clock used. At a given reference time, the 
algorithm requires the time differences between pairs 
of clocks (one clock is chosen as the common clock 
for all differences) and an estimate of the charac- 
terization parameters for each clo'ck's systematic and 
stochastic frequency deviations. 

Because the time of an individual clock cannot 
be measured, one must measure time differences 
between clocks. Thus the ensemble time is not 
directly observable and it is therefore inappropriate 
to use an accuracy algorithm-such as a Kalman 
filter - to generate time by minimizing time error. 
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However, we can, and do in the algorithms discussed 
here, optimize time and time-interval stability. 

The time of a clock is a derived quantity which 
we infer from the clock's frequency., The true 
physical quantity produced by a clock is its 
frequency ; so all the parameters which characterize 
clock performance necessarily describe aspects of 
that frequency. One can use these parameters to 
optimize time uniformity and frequency accuracy. 
An algorithm that optimizes on time accuracy allows 
the clock with the best long-term stability to 
dominate the scale while sacrificing most of the 
short-term performance of the other clocks. 

The AT1 time scale algorithm at the National 
Institute of Standards and Technology (NIST) has 
generated a scale since 1968. This scale has a 
number of useful properties that include : models 
of white, random-walk and flicker frequency mo- 
dulation (FM), a fractional frequency variation which 
is generally smaller than that of any clock in the 
scale, adaptive estimates of clock weights, reliability 
beyond any individual clock, the ability both to 
easily add clocks to or remove them from the 
ensemble with minimal impact on the scale and to 
calibrate the ensemble against a primary reference. 
But there is still room for improvement. It would 
be desirable to obtain a time scale which simulta- 
neously : detects frequency steps automatically, can 
be optimized for post-processing (including running 
both backwards and forwards in time) and can run 



with minimal supervision for use in non-technical 
environments. 

The new algorithm we report here combines 
aspects of the NIST AT1 algorithm with techniques 
from Kalman filtering. Both AT1 and the new 
algorithm include estimates of the time, frequency, 
and frequency drift for each clock in the ensemble. 
We model the physical frequency of a clock as 
having two stochastic parameters : white FM and 
either flicker or random-walk FM. Whereas the 
time estimate in our new algorithm is made the 
same way as in AT1, our method of estimating 
frequency is new. We treat the first difference of 
the algorithm’s time offset for a given clock as if 
it were a “measurement” of that clock’s frequency 
offset from the ensemble. Once we have measurements 
of individual clocks, as opposed to clock differences, 
it is appropriate to apply Kalman techniques to 
filter out the white FM. The result of this calculation 
is not the physical frequency of the clock but a 
mathematical estimate of the random-walk (or flicker) 
FM component of frequency plus drift, denoted by 
y ,  and an estimate of the variance of y .  This 
frequency variance provides us with a quantitative 
confidence of the frequency estimate, which facilitates 
the attainment of all three desirable improvements. 

Frequency-step detection requires an examina- 
tion of the data over a multiple-measurement time 
period because : 1) we measure time differences 
directly, and not frequency, thus it takes at least 
two measurements to determine frequency ; 2) the 
white F M  of a clock can mask frequency steps, 
therefore one must average the signal until the white 
FM drops below the size of the frequency step. In 
our algorithm, we compare the estimate of the 
average frequency offset over an interval with the 
filtered estimate from the beginning of that interval. 
If this difference is larger than the confidence 
estimate of the frequency - obtained from the estimate 
of frequency variance - we conclude that a frequency 
step has occurred. 

The estimate of frequency variance also allows 
us to smooth our estimates of y in a post-processing 
mode, where we may combine the variances derived 
from both a forward and a backward filter. The 
formalism for this process is also derived directly 
from Kalman filter theory. Essentially, we use the 
reciprocals of the forward and backward frequency 
variances as weights to combine their respective 
estimates at a given reference time. We do not 
incorporate the data from both filters simultaneously, 
because that would not provide independent esti- 
mates. Instead, at a given reference time, we use 
the extrapolated estimates of frequency and variance 
from one filter - the backward filter for example -and 
combine this estimate with its counterpart from the 
forward filter, which has been updated with the 
data. 

‘Because our algorithm includes the Kalman 
formalism, a new clock with an initial set of long- 
and short-term performance characterization para- 
meters can be inserted into the ensemble and the 
algorithm will adapt from an initial estimate of 
frequency variance, thereby learning the new fre- 
quency. This learning curve allows us to introduce 
new clocks into the scale without perturbing the 
scale’s performance. 

In this paper we sketch the AT1 algorithm and 
describe our modifications to it, which we call AT2, 
concentrating on those aspects which provide au- 
tomatic frequency-step detection and exemplify its 
use with reference to both simulation and real clock 
data. 

2. AT1 Formalism 

The AT1 algorithm estimates the time and frequency 
offsets of each clock from ensemble time (and 
frequency). An estimate of frequency drift for each 
clock can be entered and used for time prediction, 
but it is not updated in the calculations. The weight 
of each clock is determined by its prediction 
confidence, the normalized reciprocal of the squared 
prediction error. AT1 produces a time scale with a 
three-step calculation for each clock : time update, 
prediction confidence update, and the frequency 
update. Each of these steps is further sub-divided 
into an initial prediction and then the update using 
the clock data. 

2.1 Time prediction 

The prediction of the time offset from ensemble 
time, ii, of clock i for the current measurement 
time, t + z, is calculated from the previously updated 
time offset at time t ,  x i ,  the filtered frequency, yi ,  
and the constant frequency drift, Di, according to 

i i ( t  + z) = x,(t) + y , ( t )  + ~ z. ( 4.’) 
2.2 Time update 

Given measurements of time differences between 
each pair of clocks, xJ,(t + t), the time offset of 
clock i is updated in a weighted average, using the 
prediction, weight and time-difference measurement 
of every clock, j, that is, 

n 

x , ( t  + t) = WJ[iJ(t + z) - XJl( t  + z)]. (2) 
J =  1 

The weights, wj, are determined from the prediction 
confidence. 



2.3 Adaptative clock weights 

The clock weights used to update the time offsets 
are calculated from the variances of the time 
residuals, E , Z ( T ) ,  by 

w, = ~ 

& : ( T ) '  
(3) 

where E : ( T )  is the ensemble prediction error. In 
Appendix A we show that when the weights are 
calculated in this way, the resulting time updates 
optimize the ensemble time stability in a minimum 
variance sense. These weights adaptively match the 
relative stability of the clocks in the ensemble 
because $(z) and &;(z)are estimated from the data. 

2.4 Ensemble prediction error 

The ensemble prediction error provides a numerical 
estimate of the stability of the ensemble over an 
integration time T .  It is calculated as 

(4) 

From this equation we see that a poorly performing 
clock will not destabilize the ensemble ; clocks can 
only improve ensemble stability. 

2.7 Prediction error update 

Because of its stochastic nature, the squared 
prediction error of each clock needs to be averaged 
over some period of time. On the other hand, since 
the noise characteristics of a clock may not be 
stationary, past updates are de-weighted in an 
exponential filter as follows : 

(7) 

The time constant for the filter is typically 
chosen to be N ,  = 20days for cesium clocks, 
representing the time one expects the white F M  
level to be constant. The initial value of ~ ' ( 2 )  is 
estimated as T ' o ; ( T ) .  

2.8 Frequency estimate 

The average frequency of each clock at time t + T 

over the intervalz, based on the latest two time 
updates, is used as an estimate of that clock's 
current frequency, 9 , .  The calkulation is 

Xi( t  + T )  - X,(t) 

T 
j , ( t  f T )  = 

2.9 Frequency update 
2.5 Prediction error estimate 

An estimate of the prediction error of clock i over 
the interval z is calculated from the difference 
between the time prediction and subsequent update, 
plus an estimate of the average bias of this value 
from an absolute prediction error, according to 

CI(z) = la,(t + T )  - X , ( t  + t)l + K , ,  ( 5 )  
where K, is the expected value of the bias of clock 
i. Thus C, is an estimate of the deviation (square 
root of variance) of the clock based on the current 
measurement cycle. 

2.6 Bias of the error estimate 

Because ensemble time is a weighted average of 
each of the individual clock times, the prediction 
error of a clock measured against the scale will be 
biased low, on the average. To correct for this 
biasing, we include an estimate of the bias for each 
clock, which is : 

Thus the bias correction, K,, is the difference between 
the average prediction error relative to the scale 
and the absolute average prediction error. In 
Appendix B we show the derivation of this factor 
which assumes a normal distribution of clock noise. 

We incorporate the current estimate of frequency 
and the previous frequency update into an expo- 
nentially-filtered update of the current average 
frequency offset of each clock, according to 

(9) 

where the time constant for this filter, m,,  is 
calculated from the noise parameters for each clock. 

2.10 Exponential time constant 
for the frequency update 

The exponential time constant used to filter the 
frequency updates is determined from the relative 
levels of white FM and random-walk (or flicker) 
FM for each clock by 

Here, T ~ , , , ~  is the integration time which gives the 
minimum value on a standard o ~ ( T )  plot, given that 
the clock's stochastic deviations are characterized 
by white and random-walk FM and T ,  is the 
minimum T value used for computing o,,(T). This 
value of m, can be shown to optimize the stability 
in predicting time, given these two kinds of noise 
in the clock (white and random-walk FM). If white 



FM and flicker FM are more suitable models, then 
mi can be approximated as T , / T ~ ,  where T ,  is the 
intercept value of T on a a,(?) plot for the white 
and flicker FM. 

3. AT2: AT1 Plus Frequency Variance 

In addition to what AT1 provides, we would like 
to have an estimate of the variance of the residuals 
of the frequency offset from the ensemble. In our 
approach, we interpret xi as a measurement of the 
time of clock i against the scale. Thus the first 
difference, E, of x l ,  as in (8), is a measurement of 
the frequency offset of clock i from the scale. In 
this way, the frequency of a given clock is now 
measurable relative to the ensemble frequency ; but 
still not measurable in an absolute sense. Once we 
have a measurement of an individual clock as 
opposed to only clock difference measurements, it 
is appropriate to apply a Kalman filter to reduce 
the white FM to obtain an updatey. 

In AT2, we model the frequency noise of a 
clock with two stochastic parameters : white FM, 
a,, and random-walk FM, oB. In estimating the 
parameter y, the white FM impulses, a, become 
measurement noise. Thus the measurement model is 

$ = y + a .  (1 1 )  

There is a second white-noise process aB - 
with impulse j - that drives the random-walk 
(integrated white noise) F M  in y ;  so the system 
model is 

~ ( t  + T )  = y(t) + D .  z + f l .  (12) 

The parameter y is the random-walk component 
of the clock's frequency plus any drift, D - T ,  and 
not the physical frequency produced by the clock. 
In contrast, the terms xi represent the physical time 
offsets of each individual clock from the scale and 
necessarily incorporate the white F M  ; therefore, the 
first difference of x is an estimate of the physical 
frequency of the clock. The frequency estimate y 
can be used to predict the time better than the 
instantaneous physical frequency. 

The equations implemented for the updates are 
as follows. We predict the frequency variance 
according to 

P ( t  + T )  = P ( t )  + a&, (13) 

where P is the prediction of the variance of the 
residuals of y that grow with T according to ai. 
We then update frequency by calculating 

ai(t + T )  . y(t) + P ( t  + T )  . $( t  + T )  

oi(t + T )  + P ( t  + T )  
y(t + T )  = 

Here the Kalman formalism provides us with an 
exponential filter on y as in AT1. In steady state 
AT2 does reduce to AT1, if the weights are 
chosen properly; thus it inherits the ability of 
AT1 to model flicker FM.  The frequency variance 
update is 

P(t  + T )  = (+ a; ' P 
02, + p t + r  

We use the AT1 estimate of prediction error, E ( ? ) ,  

as our estimate of a,, the white F M  level. This is 
valid if the measurement interval, T ,  is well within 
the range of integration times for which the white 
F M  is dominant, as is the case with the system at 
NIST, which makes measurements every two hours. 

Because we estimate the "measurement noise", 
a:, our system constitutes an adaptive Kalman filter, 
which allows P, the variance of the residuals of y, 
to evolve with changes in ai,  from an initial value. 
Thus the integration time of the exponential filter 
on y as expressed in (14) changes with time, as 
compared with the parameter mi as in (10) for AT1. 
This occurs when initializing a new clock and when 
a clock's white FM level changes. 

Setting z to unity and solving (13) and (15) 
for the steady-state values of P, we have 

Making the appropriate identifications between the 
frequency updates (9) and (14), we have 

Applying (16) to this result, we obtain 

a', m(m + 1) = - 
0; 

(17) 

These equations allow us to compare the performance 
of the two algorithms. 

We close this section with a brief discussion of 
this algorithm in relation to three others. Jones and 
Tryon [l]  have designed a time scale algorithm 
strictly employing a Kalman filter. The scale produced 
from this algorithm, called T A  (NIST), has been 
generated at NIST in parallel with AT1 since about 
1983. Their algorithm is mathematically identical 
with the AT1 algorithm for the time and frequency 
predictions and updates [2], but differs in the 
calculation of the clock weights for the time update 
and the choice of exponential filter parameters for 
the frequency update. These differences affect the 
ensemble time generated by TA (NIST). 

Previous simulation has shown that the pure 
Kalman filter time scale sacrifices short-term 



performance and simply follows the clock with the 
best long-term performance. This is consistent with 
the design of Kalman filters in general, which 
minimize error in estimating the state vector. Because 
the state vector of the Jones-Tryon filter has elements 
of both time and frequency, the filter minimizes 
both time and frequency error. This can sacrifice 
short-term stability. This failure is also manifest in 
that elements of the covariance matrix grow without 
bound. In practice, with a good ensemble of clocks, 
this growth is not large enough to cause computer 
overflow errors in practical applications, but it does 
suggest a possible opening for a failure. 

The ALGOS algorithm is used at the Bureau 
International des Poids et Mesures (BIPM) for the 
generation of International Atomic Time (TAI) [3]. 
With it, measurements are taken every ten days and 
combined to optimize the long-term stability. A 
fundamental difference between ALGOS and AT2 
is that, since ten days of integration is beyond the 
range of white FM of most clocks [4], short-term 
stability is not an issue in the ALGOS algorithm. 
ALGOS would be less useful at NlST because data 
is taken every two hours. Two other features of 
ALGOS are that it is a deferred time scale-so it 
is strictly a post-processing algorithm - and it detects 
abnormal behavior. Although AT2 is a real-time 
time scale algorithm, one of our aims is to develop 
a post-processing option also. 

Another time scale, developed by Stein, is in 
use at the Naval Research Laboratory (NRL) in 
Washington D.C., and at CSOC in Colorado Springs, 
Colorado [ 5 ] .  This scale was developed to run well 
without the scrutiny of technical staff. The algorithm 
is based entirely on the Kalman formalism, thus it 
optimally sets clock parameters when entering new 
clocks or starting the scale by minimizing least 
squares error. This algorithm has been designed to 
avoid the problem we discuss above with the Kalman 
filter’s minimizing time and frequency error, thus 
losing short-term stability. Yet, because the Kalman 
filter is a least squares error algorithm, it is not 
clear whether this algorithm can optimize stability 
the way AT2 is explicitly designed to do. 

4. Frequency-Step Detection 

Frequency steps can be detected only some time 
after they occur. Since our measurements are of 
phase differences between clocks with inherent white 
FM, frequency steps appear only after the accu- 
mulation of measurements. In the presence of flicker 
or random-walk FM no mean frequency value may 
be assigned, so small frequency steps blur into the 
stochastic noise. We define a frequency step as a 

shift in frequency greater than four times the 
standard deviation of the stochastic impulses. By 
contrast, a time step is a shift in phase of a clock 
that exceeds three times the current white FM 
characterization. 

The detection of frequency steps may be 
obscured by the presence of time steps and the 
stochastic noise from white and random-walk FM. 
If a clock generates a time step, and that reading 
is used to compute an average frequency since the 
last measurement, then the time step can be 
indistinguishable from a frequency step. Only after 
two measurements can one conclude that the new 
frequency after the time step is approximately equal 
to that before it and so distinguish between time 
and frequency steps. 

Whereas the possibility of time steps requires 
a wait of at least two measurements before checking 
for a frequency step, it may also be useful to look 
backwards beyond two measurements for the deter- 
mination of small frequency steps. This procedure 
allows the white noise to be averaged down to the 
point where only random-walk FM remains. The 
maximum useful extent of a search backwards for 
frequency steps is z,,, for a clock with white FM 
and random-walk FM, or T ~ ,  for a clock with white 
and flicker FM. In terms of a oy(z) (Allan variance) 
plot, z,,, is the integration time at which the white 
FM dominated curve gives way to the random-walk 
FM region, and z, is the integration time at which 
the white FM dominated curve gives way to the 
flicker FM region (these transitions in slope occur 
at the familiar “knee” of the Allan variance plot). 
Because we must measure clock differences, our best 
estimate of an individual clock frequency will be 
for a clock against the ensemble. But the ensemble 
itself must have stochastic processes, and these also 
need to be considered when testing for frequency 
steps. 

The new algorithm tests for frequency steps 
by iterating backward for each clock a range 
of measurements from two before the current mea- 
surement time up to a time zmrn back. Thus the 
search is limited to some maximum number of 
consecutive discrete measurement times, L,,, , an 
integer determined from z~~ , , .  Since our estimate of 
the white FM level, oa, is adaptive, z,,, is always 
changing. We slow these changes by exponentially 
filtering uar which is used to compute T,,,, with a 
longer time constant than that used for the clock 
weights. On each measurement cycle, for each clock, 
we maintain a buffer of the previous L,,, values of 
all the necessary parameters for frequency-step 
detection. At each measurement, we search for 
frequency steps for each clock. We define the average 
frequency of a clock over the time interval from 
the measurement L intervals back ( L  < L,,,), x-, 



at time t - L ,  to the most recent measurement before 
the current time, x- at time t - ,  , that is, 

We compare this frequency with the updated estimate 
of y ,  saved from time that is, we compare 
a filtered estimate of frequency from the beginning 
of a fixed time interval with an estimate of the 
average frequency over that interval. If the frequency 
difference exceeds a test value, we conclude that the 
clock generated a frequency step. The test is whether 

and apply steering. An alternative theoretical ap- 
proach would be to use a delay larger than the 
maximum allowable T,~, for the frequency of at 
least one clock and to use the output of that delay 
to steer from, to define the ensemble time [6]. 
Corrections from any frequency steps could be 
included in this steering. Such a delay would have 
to be of the order of a week to be of use for 
current commercial cesium clocks. Practically, such 
a delay would have to be created digitally, and the 
clock driving the digitization would add further 
noise and unreliability to the system. 

where atx and oix are the white and random-walk 
FM of the ensemble determined from 

and 

In this way we incorporate the stochastic impulses 
both from the individual clocks and from the scale 
itself. If a clock generates a frequency step, it is 
possible for that same step to appear over a 
contiguous range of test times. We look for frequency 
steps over all times in the allowable range and treat 
that having the largest inequality in (20) as containing 
the actual frequency step. 

When a frequency step is detected, we increase 
the variance, P, at the time of the step, assign the 
stepped clock zero weight in the scale and then re- 
run the scale from that time up to the most recent 
measurement cycle. We do not search for new 
frequency steps during this secondary run ; thus 
there is no iterative search for frequency steps. The 
stepped clock remains deweighted until a time z,,, 
after the occurrence of the step. When the clock is 
re-entered into the scale, am--- which has evolved 
adaptively while the clock was deweighted - is 
increased by a fixed amount. In other words, when 
we find a frequency step, the clock is removed from 
the scale until the algorithm adaptively learns the 
clock’s new frequency. The clock is then re-entered 
with an initially large doubt about its new frequency. 

In a real-time algorithm, re-running the scale 
cannot change the values already measured against 
the scale. We cannot change history; but we can 
decide that our current estimates of clock frequency 
are in error, due to a frequency step in the past, 

5. Simulation 

We simulated an ensemble of clocks by generating 
ten independent sets of time series data at one 
point per day for seven hundred days. These clocks 
were generated with different values of white and 
random-walk FM, designed to span the noise range 
of typical cesium clocks. To achieve the simulation 
properly, we used only phase difference data between 
these clocks. Our aim was to establish the perfor- 
mance limits of the new algorithm, that is, whether : 

(1) both algorithms AT1 and AT2 produce a 
time scale which performs apparently better 
than the best clock in the scale at all 
integration times, 

(2) the TA (NIST) algorithm is dominated by 
the clock with the best long-term perfor- 
mance at all integration times, 

(3) the AT2 generated estimate of the confidence 
on the frequency offset appears reasonable 
and 

(4) the use of this confidence estimate to 
determine frequency steps improves the long- 
term performance of the time scale. 

Figure 1 illustrates item (1). We have computed 
the stability of each clock using an N-cornered hat 
technique [7]. We determine the stability of the scale 
by taking the output value of clock-minus-scale and 
subtracting the generated value of clock-minus-truth. 
There are significant differences between the variances 
computed directly, and those estimated from the 
N-cornered hat, Figure 2 .  We conclude that these 
differences result from apparent correlations in the 
data. This correlation could come from either the 
finite data length, or from real correlations in the 
pseudo-random number generator. If the generated 
clocks are truly correlated, then the algorithm can 
only produce a variance better than the uncorrelated 
part. We notice that the scale seems to follow the 
shape of the variances from the N-corner hat. This 
suggests some correlation in the generated data. 
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are generated clocks, we know the true value of 
the random-walk component of frequency of that 
clock versus the true value of the time scale. The 
differences between these two, the estimate minus 
truth, are the residuals plotted. The sigma value 
used in the plot is the RMS of the estimated 
deviation of the clock plus the estimated deviation 
of the scale. The line plotted is the three-sigma 
value. This should be a 99,8 percentile. Over the 
700 points plotted we should get one or two residuals 
crossing the lines of the sigmas. This seems to be 
the case. 

Truth vs N-Corner Hat 
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Clk 1 1 :  Pure Random Walk = 2,s 
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Figure 1. The stability of each simulated clock is 
computed using an N-cornered hat technique, whereas 
the stability of the scale is determined by taking the 
output value of clock-minus-scale and subtracting the 
generated value of clock-minus-truth. The scale 
produced with AT2 outperforms all clocks at all 
integration times. 
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Figure 2. The significant differences between the 
variances computed directly and those estimated from 
N-cornered hat must be due to apparent correlations in 
the data. 

Figure 3 shows a comparison of the output of 
the TA (NIST) Kalman filter with the simulated 
input data. As expected, the Kalman algorithm has 
the stability of the clock with the best long-term 
variations. 

Figures 4 and 5 show the residuals from AT2 
compared with the confidence from the variance of 
frequency residuals. The algorithm calculates an 
estimate of the random-walk component of a clock’s 
frequency offset from the ensemble. Because these 

I o4 I o5 1 oG I o7 1 OB 

Integration Time I s 

Figure 3. Clearly, in this comparison of the output of a 
version of the Kalman filter which defines TA (NIST) 
with the simulated input data, one can see that the 
Kalman algorithm has the stability of the clock with 
the best long-term variations. 

Simulation Clk I: Residuals vs. Estimated Confidence 

White FM = 1 ns. Random Walk FM = 15 ns. both @ 1 day 
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Figure 4. The frequency residuals of simulated clock 
No. 1 from the AT2 algorithm are compared with the 
three-sigma value of estimated confidence, as derived 
from the estimated variance of frequency residuals. 



Simulation Clk 9: Residuals vs. Estimated Confidence 
While FM = 30 ns. Random Walk FM = 0,s ns. both @ 1 day 
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Figure 5. The frequency residuals of simulated clock 
No.9 from the AT2 algorithm are compared with the 
three-sigma value of estimated confidence, as derived 
from the estimated variance of frequency residuals. 

Clock 9: White FM = 30 ns. Random Walk = 0,5 ns, both @ 1 day 
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Figure 6. The frequency offset from the scale of 
simulated clock No. 9 clearly shows the generated 
frequency step of 1 x lo-'' on day 500. 

Clock 9: White FM = 30 ns, Random Walk = 0,5 ns, both @ 1 day 
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Figure 7. This plot of the AT2 estimate of the random- 
walk component of frequency for clock No. 9 shows 
that the algorithm detected the frequency step, with the 
step detector set at 4 sigma. 

Clock 1: White FM = 1 ns, Random Walk FM = 15 ns, both @ 1 day 
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Figure 8. Although the scale shows very little 
smoothing, the AT2 algorithm automatically detected a 
frequency step of 2 x lo-'* on day 100 in simulated 
clock No. 1 and removed the clock from the scale. 

Frequency-Step Detection Improves Long-Term Stability 
Simulated Clocks 
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Figure 9. The benefit from having detected the 
frequency steps is demonstrated by the significant 
improvement in scale stability at an integration time of 
128d and longer. 
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Figure 10. The results are shown for the two scales, the 
official AT1 and the new AT2, run on NIST clocks as 
well as USNO and PTB. 



Lastly, we inserted frequency steps into the 
simulated clock data. Figure 6 shows the frequency 
offset from the scale of simulated clock No. 9, with 
a frequency step of 1 x on day 500. This 
clock was given a white FM level of 30 ns, and a 
random-walk FM level of 0,5 ns, both at 1 d. Figure 
7 shows estimates from the AT2 scale of the 
random-walk component of frequency. The reduction 
in the white FM level is apparent. The algorithm 
successfully located the frequency step, with the step 
detector set at 4 sigma, with sigma defined as above. 
When such a step is detected, the scale is re- 
calculated with the stepped clock removed until 
the scale can “learn” the new frequency value. 
Figure 8 shows the frequency offset from the scale 
of simulated clock No. 1,  with a frequency step of 
2 x on day 100. The noise of this clock is 
predominantly random-walk FM. The estimate from 
the scale shows very little smoothing. Yet, even in 
this case, the frequency-step detector automatically 
found the step and removed the clock from the 
scale. Figure 9 shows the benefit of frequency-step 
detection. There is a significant improvement at an 
integration time of 128 d and longer. 

6. Real Data 

We ran AT2 on data from real clocks at NIST 
over the period from December 31, 1988, to October 
30, 1989. AT2 found 1 1  frequency steps among the 
13 clocks in the ensemble over the 400-day run. 
The steps ranged from 3,l to 4,2 parts in We 
compared the scale thus created with other labo- 
ratories : PTB, USNO, TUG, and NRC, using GPS 
common-view measurements [SI. The GPS data is 
the UTC of each lab, which usually is steered to 
the international UTC. However, during this period 
no steering was applied so the scales should be 
independent. Using an N-cornered hat technique, 
we were able to determine the variance of each 
UTC scale. We compared the results with a similar 
analysis using the official NTST AT1 time scale. 
The results for the two scales run on NIST clocks 
are plotted with those from USNO and PTB in 
Figure 10. This shows that the scales of AT1 and 
the new AT2 are similar, but in the long term the 
AT1 scale is somewhat better. The AT1 scale is 
watched carefully and clocks are administratively 
checked for time and frequency steps, and for 
changes in general performance. Clearly human care 
is labor intensive, but it adds much to the 
performance of a time scale. 

7. Conclusions 

The AT2 algorithm employs the clock-against- 
ensemble time estimate from the AT1 algorithm as 

a pseudo-measurement. The first difference of these 
measurements provides a pseudo-measurement of 
clock frequency against the scale which we use as 
input to a Kalman filter to estimate the random- 
walk component of the frequency state in the 
presence of white FM. In this way we avoid the 
usual Kalman problem with the unobservability of 
the ensemble frequency. Although our algorithm 
works similarly to AT1 when there are no frequency 
steps, we have demonstrated the ability to detect 
frequency steps automatically, and to adaptively 
adjust the exponential time constant for frequency 
averaging. Like the AT1 algorithm, the AT2 
algorithm produces an ensemble time whose variance 
is smaller than the best clocks in the scale at all 
integration times. The frequency variance provides 
an estimate of frequency confidence which seems 
reasonable compared to the residuals. The quanti- 
zation of this confidence enables frequency-step 
detection and therefore improves long-term stability 
in the simulated data. Because the official AT1 
scale, using real clocks, is closely monitored in real 
time, it out-performs the new scale, as expected. 
The advantages of the new scale are that it 
automatically detects and adjusts for frequency steps, 
and adaptively changes the integration time of a 
clock’s frequency as its white FM level changes. 

Appendix A :  The Weights in (3) Minimize 
the Variance of X, 

Let us define the estimate of clock j against the 
scale via the measurement using clock i as 

XJ(,) = i , ( t  + z) - x, , ( t  + z). (All 
We want to choose weights w, to combine these 
different estimates into an estimate of clock j using 
the entire ensemble of clocks, that is, 

with the constraint that the weights are normalized, 
as in 

n 

C w , = I  
I =  1 

Under the assumption of independence of the x,(,), 
if o,”(]) is the variance of x , (~ ) ,  then the variance of 
X ,  satisfies 

n 

(r; = w, . c&). 
1=  1 

We want to choose the weights, w,, to minimize 
cf for all j .  We first fix a particular c,”. We may 
take the partial derivative of 0,” with respect to w,, 
set it equal to zero and solve to find the extremum. 
To aid in this we may add a constant to the sum 



as the method of Lagrangian undetermined multi- 
pliers. So we minimize the quantity 

n n 

S,” w, .o; ( , )  + k 1 w,. (A51 
1= 1 1= 1 

Taking the partial derivative of this quantity and 
solving for the w, we find 

where 

In this equation 012~) is the variance of the 
predictability of clock i as seen by clock j. Since 
we want the weights to be independent of j, we 
choose the weights to be inversely proportional to 
the variance of the predictability of clock i against 
the scale. This gives us the weights in ( 3 )  as defined 
by the variances from equations(4)-(7) with the 
considerations in Appendix B. 

Appendix B :  Ki as Defined in (6) 
is the Expected Value of the Bias of Clock i in(5) 

For notational convenience we suppress the subscript 
i in what follows. This should lead to no confusion 
since the argument holds for any given clock. We 
also suppress the notation z for the fixed time 
interval. Thus instead of q(t) we simply type E .  

The ensemble time is the weighted average of 
all the clocks in the scale. Thus, the average 
prediction error of a given clock relative to the 
ensemble time will be biased smaller than its absolute 
average prediction error. If the clocks are indepen- 
dent, the bias of a particular clock will be 
proportional to its total prediction error according 
to its weight. Thus, if we assume clock independence, 

K =  w . 6 ,  (B1) 
where 6 is the average prediction error of this clock 
against a clock running at the theoretically perfect 
rate, w is the weight of this clock, as in ( 3 ) ,  and K 
is the average bias of this clock’s linear difference 
from the scale due to the fact that the scale is 
defined in part by this clock. 

We compute 6 as follows. We first assume that 
6, the prediction error over a given interval, has a 
Gaussian distribution with mean zero and with 
standard deviation E ,  E as in (7). 

The assumption of zero mean in the distribution is 
functionally correct for our purposes, but may not 
be true in general. We want to estimate the average 
linear offset of the prediction error from the mean. 

The mean may not be zero since the scale will walk 
off in rate (and hence in time as well) from a 
theoretical perfect clock. Since we are concerned 
only with deviation from the mean, we may assume 
the mean is zero without loss of generality. Then 

2E - _ _ _  f i ,  
Substituting this result into (Bl), along with the 
expression for weight, w, from ( 3 ) ,  we have 

where we have again suppressed the subscript i in 
K and in the denominator, for clock i, and the 
notation (z) indicating that E is the prediction error 
over the fixed interval z. Note that E,  is the prediction 
error for the ensemble as in (4). 
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